


Echocardiographic Assessment of Aortic Valve Stenosis

Technical Factors

HIGH GRADIENT AS

LOW GRADIENT AS

baseline, curve and scale to optimize signal
Expanded time scale and velocity range and baseline adjusted so velocity signal fits but fills the vertical scale
Report window where maximum velocity obtained

peak of dense velocity

VTI traced from outer

curve.

Multiple acoustic windows (e.g. apical,

Decrease gain, increase wall filter, adjust

suprasternal, right parasternal)

Table 1: Recommedations for grading of AS severity

	Mild	Moderate	Severe			
Peak velocity (m/s)	2.6 - 2.9	3.0 - 4.0	≥ 4.0			
Mean gradient (mmHg)	< 20	20 - 40	≥ 40			
AVA (cm²)	> 1.5	1.0 - 1.5	< 1.0			
Indexed AVA (cm ² /m ²)	> 0.85	0.60 - 0.85	< 0.6			
Velocity ratio	> 0.50	0.25 - 0.50	< 0.25			

Table 2: Measures of AS severity obtained by
Doppler-echocardiography

	Formula/method	Advantages	Limitations
AS jet velocity m/s	Direct measurement	Direct	Correct measurement requires parallel alignment of ultrasound beam, Flow dependent
Mean gradient mmHg	$\Delta P = \frac{\sum 4v^2}{N}$	Units comparable to invasive measurements	Accurate pressure gradients depend on accurate velocity data, Flow dependent
Continuity equation valve area cm ²	$AVA = \frac{CSA_{LVOT} \times VTI_{LVOT}}{VTI_{AV}}$	Measures effective orifice area; Relatively flow independent	Measurement error more likely

Table 3: Criteria that increase the likelihood ofsevere AS with AVA < 1.0 cm² and mean gradient <40</td>mmHg in the presence of preserved EF

1. Clinical criteria

Physical examination consistent with severe aortic stenosis
Typical symptoms without other explanation
Elderly patient (> 70 years)

2. Qualitative imaging data

LVH (additional history of hypertension to be considered)
Reduced LV longitudinal function without other explanation

2.5 even Maximum dobuta Results: • Increase in AVA > 1.0 cm ² (s • Severe AS if AS jet velocity :	\ge 4 m/s or mean > 30-40 mmHg eed 1.0 cm ² at any flow rate)	LVOT	AV AV AV AV AV AV 20 40 40 60 80 100 120 Rest		Severe AS unlikely: men < 1600 †Agatston method for valve calc Important to exclude: • Measurement errors • Severe hypertension • Inconsistency between AVA and velocity between 0.8 and 1.0 cm ²	women ≥ 1200 women ≥ 1600 women < 800 cification
Abbreviations: AS: Aortic stenosis AV: Aortic valve AVA: Aortic valve area	CMR: Cardiac magnetic resonance imaging CSA: Cross-sectional area CT: Computed tomography CW: Continuous wave	EF: Ejection fraction LFLG: Low flow low gradient LV: Left ventricle LVH: Left ventricular hypertrophy	LVOT: Left ventricular outflow tract MSCT: Multislice computed tomography ΔP: Pressure gradient ΔPm: Mean pressure gradient	PR: Pressure recovery SV: Stroke volume SamV: Sample volume SVi: Stroke volume index	TEE: Transesophageal echocardiography Vmax: Maximum velocity VTI: Velocity time integral 2-C: Two-chamber	2-D: Two-dimensional 3-D: Three-dimensional 4-C: Four-chamber

Helmut Baumgartner, MD, FESC (Chair), Judy Hung, MD, FASE (Co-Chair), Javier Bermejo, MD, PhD, John B. Chambers, MB BChir, FESC, Thor Edvardsen, MD, PhD, FESC, Steven Goldstein, MD, FASE, Patrizio Lancellotti, MD, PhD, FESC, Melissa LeFevre, RDCS, Fletcher Miller Jr., MD, FASE, Catherine M. Otto, MD, FESC. Recommendations on the Echocardiographic Assessment of Aortic Valve Stenosis: A Focused Update from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. J Am Soc Echocardiogr 2017; 30:372-392.

Poster ordering information and full text of ASE guideline documents available at: ASEcho.org

Poster Authors: Lanqi Hua, RDCS, Judy Hung, MD, Jonathan Passeri, MD, Massachusetts General Hospital, Boston, MA. Design and illustration by medmovie.com © Copyright 2017 The American Society of Echocardiography