Echocardiographic Assessment of Aortic Valve Stenosis

Technical Factors

Algorithm on Approach to Grading AS Severity
Valve Morphology by Echocardiography Suspicious of Aortic Stenosis
(1) Assess Velocity/Gradient

Table 1: Recommedations for grading

| of AS severity |
| :--- | :---: | :---: | :---: |

	Mild	Moderate	Severe
Peak velocity $(\mathrm{m} / \mathrm{s})$	$2.6-2.9$	$3.0-4.0$	≥ 4.0
Mean gradient (mmHg)	<20	$20-40$	≥ 40
AVA $\left(\mathrm{cm}^{2}\right)$	>1.5	$1.0-1.5$	<1.0
Indexed AVA $\left(\mathrm{cm}^{2} / \mathrm{m}^{2}\right)$	>0.85	$0.60-0.85$	<0.6
Velocity ratio	>0.50	$0.25-0.50$	<0.25

5 Assess LVEF
LVEF abnormal < 50%

	Formulamethod	Advantages	Limitations
	divect	Direet	Correct measurement requires parallel alignmen of ultrasound beam, Flow dependent
$\begin{aligned} & \text { Mearan } \\ & \text { gamen } \\ & \text { nomplo } \end{aligned}$	$\frac{54 v^{2}}{N}$	Units comparable to invasive measurements	$\begin{aligned} & \text { Accurate pressure } \\ & \text { gradients depend on } \\ & \text { accurate velocity data, } \\ & \text { Flow dependent } \end{aligned}$
$\begin{gathered} \text { conotion } \\ \text { and } \\ \text { and } \\ \text { anco } \end{gathered}$	$A V A=\frac{C S A_{\text {vover }} \times T T_{\text {Vor }}}{V T_{N V}}$		Measuementerorom more

Table 3: Criteria that increase the likellhood of seve AS with AVA $<10 \mathrm{~cm}^{2}$ and AS with AVA $1.0 \mathrm{~cm}^{2}$ and mean gradien mmH in the presence of preserved FF

1. Clinical criteria

Physical examination consistent with severe aortic stenosis Typical symptoms without other explanation

2. Qualitative imaging data

- LVH (additional history of hypertension to be considered)
- Reduced LV longitudinal function without other explanation

3. Quantitative imaging data

- Mean gradient $30-40 \mathrm{mmHg}, \mathrm{AVA} \leq 0.8 \mathrm{~cm}^{2}, \mathrm{SVi}<35 \mathrm{~mL} / \mathrm{m}^{2}$
- Calcium score by MSCT \dagger ten 2000 women ≥ 1200
Severe AS likely: \quad men ≥ 200. Severe AS very likely: men $\geq 3000 \quad$ women ≥ 1600 Severe AS unlikely: men < 1600 women <800

Important to exclude:

- Measurement errors

Severe hypertension
Inconsistency between
Inconsistency between AVA and velocity/gradient cut-offs in the range of AVAs
between 0.8 and $1.0 \mathrm{~cm}^{2}$
Clinically moderate AS (despite an AVA < $1.0 \mathrm{~cm}^{2}$) in a patient with small body size

Helmut Baumgartner, MD, FESC (Chair), Judy Hung, MD, FASE (Co-Chair), Javier Bermejo, MD, PhD, John B. Chambers, MB BChir, FESC, Thor
Edvardsen, MD, PhD, FESC, Steven Goldstein, MD, FASE, Patrizio Lancellotit, MD, PhD, FESC, Melissa Lefevere, RDCS, Fletcher Miller Jr., MD, FASE, Catherine M. OHto MD, FESC. Recommendations on the Echocardiographic Assessment of Aortic Valve Stenosis: A Focusuld Uprata for FASE, Catherine M. Ottto, MD, FESC. Recommendations on the Echocardiographic Assessment of Aortic Valve Stenosis: A Focused Update from
the European Association of Cardiovascular Imaging and the American Society of Echocardiography. JAm Soc Echocardiogr 2017; 30:372-392.

Poster ordering information and full text of ASE guideline documents available at: ASEcho.org Poster Authors: Lanqi Hua, RDCS, Judy Hung, MD, Jonathan Passeri, MD, Massachusetts General Hospital, Boston, MA.
Design and illustration by medmovie.com © Copyright 2017 The American Society of Echocardiography

