

Echocardiographic Assessment of Valve Stenosis

Aortic Stenosis

LVOT Diameter

 Parasternal long-axis view • Zoom mode Measure 5 mm to 10 mm from aortic annulus (solid yellow line) • Mid-systole

LVOT Doppler

- Pulsed-wave Doppler • Apical long-axis or 5-chamber view • Sample volume positioned at the same location as the measure of LVOT diameter
 - Obtain a laminar LVOT flow profile
 - · Optimize baseline, scale, sweep speed
 - VTI traced from modal velocity

	Mild	Moderate	Severe
Peak velocity (m/s)	2.6 - 2.9	3.0 - 4.0	≥ 4.0
Mean gradient (mmHg)	< 20	20 - 40	≥ 40
AVA (cm²)	> 1.5	1.0 - 1.5	< 1.0
Indexed AVA (cm ² /m ²)	> 0.85	0.60 - 0.85	< 0.6
Velocity ratio	> 0.50	0.25 - 0.50	< 0.25

Recommendations for Grading of AS Severity

- CW Doppler
- Multiple acoustic window (apical, suprasternal, right parasternal)
- Optimize signal by adjusting gain, baseline, scale, wall filter and sweep speed
- VTI traced from outer edge of dense signal curve
- Measure peak velocity and mean gradient Advantage: direct measurement
- · Limitation: flow dependent, angle dependent

Continuity equation valve area (cm ²)		
AVA =	CSA _{LVOT} x VTI _{LVOT}	
Advantages:	Measures effective orifice	

- area, relatively flow independent
- Disadvantage: Measurement error more likely

Determination of mean mitral Estimation of mitral valve area gradient from Doppler diastolic using the pressure half-time mitral flow in a patient with severe method. mitral stenosis in atrial fibrillation. (average A and B)

Line-Drawing Method 200 msec t_{1/2}=180 msec t...=100 mse

Determination of the $T\frac{1}{2}$ with a bimodal, non-linear slope of the E-wave. The deceleration slope should not be traced from the early part (left), but using the extrapolation of the linear mid-portion of the mitral velocity profile (right).

Planimetry of the mitral orifice. Transthoracic echocardiography, parasternal short-axis view.

Approaches to Evaluation of Mitral Stenosis

Mitral Stenosis

MVA = 02 cn

Measurement	Units	Formula / Method	Concept	Advantages	Disadvantages	
Valve area						
Planimetry by 2D echo	cm ²	Tracing mitral orifice using 2D echo	Direct measurement of anatomic MVA	 Accuracy Independence from other factors 	 Experience required Not always feasible (poor acoustic window, severe valve calcification) 	
Pressure half- time	cm ²	<u>220</u> T _{1/2}	Rate of decrease of transmitral flow is inversely proportional to MVA	Easy to obtain	Dependence on other factors (AR, LA compliance, LV diastolic function)	
Mean gradient	mmHg	$\Delta P_{\rm Mitral} = \sum 4 v_{\rm Mitral}^2 / N$	Pressure gradient calculated from velocity using the Bernoulli equation	Easy to obtain	Dependent on heart rate and flow conditions	
Systolic pulmonary artery pressure	mmHg	sPAP = 4v ² _{Tricuspid} + RA _{Pressure}	Addition of RA pressure and maximum gradient between RV and RA	Obtained in most patients with MS	 Arbitrary estimation of RA pressure No estimation of pulmonary vascular resistance 	

AR: aortic regurgitation, CSA: cross-sectional area, DFT: diastolic filling time, LA: left atrium, LV: left ventricle, LVOT: left ventricular outflow tract, MR: mitral regurgitation, MS: mitral stenosis, MVA: mitral valve area, MVres: mitral valve resistance, ΔP: gradient, sPAP: systolic pulmonary artery pressure, r: the radius of the convergence hemisphere, RA: right atrium, RV: right ventricle, T_{1/2}: pressure half-time, V=velocity, VTI: velocity time integral.

Findings Indicative of Hemodynamically Significant Tricuspid Stenosis

Specific Findings	
Mean pressure gradient	≥ 5 mmHg
Inflow time velocity integral	> 60 cm
• T1/2	≥ 190 ms
Valve area by continuity equation*	≤ 1 cm²*
Supportive Findings	
 Enlarged right atrium ≥ moderate 	
Dilated inferior vena cava	

*Stroke volume derived from left or right ventricular outflow. In the presence of more than mild tricuspid regurgitation, the derived valve area will be underestimated. Nevertheless a value $\leq 1 \text{ cm}^2$ implies a significant hemodynamic burden imposed by the combined lesion.

The peak velocity, diastolic timevelocity integral, mean gradient, and obtained in a modified apical pressure half-time by continuous-4-chamber view during diastole. wave Doppler.

Grad	ing of Ste	f Pulmor nosis	nary	
	Mild	Moderate	Severe	
Peak Velocity (m/s)	< 3	3-4	>4	
Peak Gradient (mmHg)	< 36	36 to 60	>60	Doming of the leaflets in sys valvular pulmo

pulmonary ole noted in onary stenosis.

Aliasing of velocities at the level of the pulmonary valve in pulmonary stenosis. velocities.

Continuous-wave Doppler across the pulmonary valve showing increased

Adapted from:

• Echocardiographic Assessment of Valve Stenosis: EAE/ASE Recommendations for Clinical Practice. Eur J Echocardiogr and J Am Soc Echocardiogr 2009. • Recommendations on the Echocardiographic Assessment of Aortic Valve Stenosis: A Focused Update from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. J Am Soc Echocardiogr 2017.

Poster ordering information and full text of ASE guideline documents available at: ASEcho.org

Design and illustration by medmovie.com © Copyright 2017 The American Society of Echocardiography